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1. INTRODUCTION

0.1 G. Freud and P. Nevai began to develop a theory of weighted
approximation for weights on R (see [1, 2, 8, 9]).

In [3], Babin constructed and investigated solutions of differential equa-
tions with analytical coefficients using methods of approximation theory.
This leads to an idea of extending his results to wider types of infinitely
differentiable functions. By a result due to Babin [4], a polynomial
approximation u(x)=limn � � Pn (A) f of the solution u(x) of the
differential equation Au(x)= f (x), where A is a semi-bounded, self-adjoint
operator, exists if and only if the coefficients of the operator are
quasianalytical.

We will consider in this paper differential operators with coefficients
which belong to Carleman classes of quasianalytical functions. We recall
fundamental definitions and notation (see also [3�5]).

Consider the set of sequences of positive numbers with the rate of growth
greater than or equal to (ck)k for some c>0. The sequences [ak] and
[bk] are said to be equivalent if there are c1 , c2>0 such that, for some
number k0 ,

ak�(c1)k bk , bk�(c2)k ak , for k>k0 .
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Let us consider a sequence [M(k)] satisfying, in addition, the following
condition: there exists a constant cM such that

M(k)
k !

M(n)
n !

�cM
M(k+n)
(k+n)!

. (0.1.1)

Given a sequence of the type defined above, let M denote its equivalence
class. Let 0 be a closed bounded domain in RN with a smooth boundary
or 0=TN, the N-dimensional torus. We denote by C(M) the set of
infinitely differentiable functions on 0 such that for any u(x) # C(M) there
exist numbers r and B such that for any k # N we have

max
x # 0, |:|=k

|D:u(x)|�BrkM(k), (0.1.2)

where x=(x1 , ..., xN), a=(a1 , ..., aN) is a multi-index, : # ZN
+ , |a|=a1+

} } } +aN , D=(D1 , ..., DN), Di=���xi , and D:=D:1
1 } } } D:N

N . Condition
(0.1.1) shows that the class C(M) is closed under multiplication.

Let A be a self-adjoint differential operator of the second order

Au(x)=& :
N

i, j=1

Di (aij (x) Dju(x))+a00 (x) u(x), (0.1.3)

where aij (x) # C(M) and aij (x)=aij (x). In the case where 0/RN, for A to
be self-adjoint, the condition

:
N

i=1

&i (x) aij (x)=0, j=1, ..., N (0.1.4)

must be satisfied for any x # �0 and normal vector &(x)=(&1 (x), ..., &N(x)).
We also assume that operator A is semi-bounded, that is,

(Au, u)�b &u&2 for any function u # C(M). (0.1.5)

Here ( } , } ) and & }& are the scalar product and norm in L2 (0), and b is a
positive constant that bounds below the spectrum of A.

We note that (as in [3]), A may be a degenerate elliptic operator.

0.2. Consider the Cauchy problems for the differential equations

Au(x)=f0 (x), (0.2.1)

�2
t u(x, t)=&Au(x, t)+ f0 (x), t>0

u(x, 0)=f1 (x), (0.2.2)

�t u(x, 0)=f2 (x),
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�t u(x, t)=&A(x, t)+ f0 (x), t>0,
(0.2.3)

u(x, 0)=f1 (x).

The functions fi (x) (as well as aij (x)) belong to the class C(M).
In this paper, we construct for each of these problems a sequence of

functions Pi
n(t, *), n=1, ..., that are polynomial in *, such that the solution

u(x, t) of any problem (0.2.1), (0.2.2), and (0.2.3) has the polynomial
approximation

u(x, t)= lim
n � �

:
k

i=0

Pi
n(A, t) fi (x), (0.2.4)

where k=0, 2, or 1 for problems (0.2.1), (0.2.2), (0.2.3), respectively.

0.3. For any sequence [M(k)], we introduce a sequence [ak] by the
formula ak= k

- M(k).

Definition 0.3.1. The class C(M) is quasianalytical if the sequence
[ak] has the properties

lim
k � �

ak=�, (0.3.1)

:
�

k=1

1
ak

=�, (0.3.2)

:
�

k=1

1
a2

k

<�. (0.3.3)

We note that [ak] satisfies the conditions in Definition 0.3.1 if and only
if the sequence bk=M(k+1)�M(k) does.

Following the ideas of [3], we introduce the functions

Fn (z)= `
n

k=1
\1+

z2

a2
k+ ,

(0.3.4)

F� (z)= `
�

k=1
\1+

z2

a2
k+ ,

Sn (z)= `
n

k=1
\1&

iz
ak+

2

,

(0.3.5)

Tn (z)=
1
2

(Sn (z)+Sn (&z)).
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We note that by virtue of (0.3.3) the function F� (z) is well-defined and is
a uniform limit of the sequence [Fn (z)] on compact sets.

We will use in the sequel the properties of the functions (0.3.4), (0.3.5)
listed in the following proposition (see also [3]).

Proposition 0.3.2. (1) Tn (&z)=Tn (z).

(2) Sn (&x)=Sn (x) and Tn (x)=RSn (x).

(3) limx � � arg Sn (x)=&?n.

(4) limx � &� arg Sn (x)=?n.

(5) 2 arg Sn (x)=&2?n.

(6) Tn (x) has 2n real roots.

(7) Fn (x)=|Sn (x)|.

(8) The positive roots of Tn (x) are the roots of the equation

2 :
n

i=1

arc tan(x�ai)=(2s&1) ?�2, where s=1, 2, ..., n.

(9) Tn (x) = 0 � RSn (x) = 0 � arg Sn (x) = ?�2 + k?, k = &n,
&n+1, ..., (n&2), (n&1).

(10) If z=ix, x # R, the values of Sn (z) and Tn (z) are positive real
numbers.

1. THE STATIONARY EQUATION: AN ESTIMATE OF
THE CONVERGENCE RATE

1.0. We consider the Hilbert space H=L2 (0). Let D(A) be the domain
of definition of the operator A. We denote R0 (A, f )=sup[R | f #
D(F� (R - A ))]. In the sequel, we will consider only those f # C(M) that
satisfy R0 (A, f )>0.

We define a new norm in D(A) by the formula &v&2=&Av&. It is clear
that &v&2�r&2 &v&, where r2=b is the number that bounds the spectrum
of A from below.

1.1. Lemma 1.1.1. Suppose 0<R<R0 (A, f ). Then

&Fn (R - A&bI ) f &�&F� (R - A&bI ) f &. (1.1.1)
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Proof. Using the spectral decomposition of A and formula (0.3.4), we
obtain

&Fn (R - A&bI ) f &2=|
�

b
|Fn (R - *&b)|2 d(E* f, f )

�|
�

b
|F�(R - *&b)| 2 d(E* f, f )

=&F� (R - A&bI ) f &2.

Lemma 1.1.2. Let u(x) be the solution of (0.2.1), let 0<R<R0 (A, f ),
and let Pn (t) be a polynomial of nth degree. Then

&u&Pn (A) f &2�sup
t�b

|1&tPn (t)|

Fn+1 (R - t&b)
&F� (R - A&bI ) f &. (1.1.2)

Proof. We obtain, by using the spectral decomposition,

&u&Pn (A) f &2
2 =&Au&APn (A) f &2=& f&APn (A) f &2

=|
�

b
(1&tPn (t))2 d(Et f, f )

=|
�

b

(1&tPn (t))2

F 2
n+1 (R - t&b)

F 2
n+1(R - t&b) d(Et f, f )

�sup
t�b

|1&tPn (t)| 2

F 2
n+1(R - t&b) |

�

b
F 2

n+1(R - t&b) d(Et f, f )

�sup
t�b

|1&tPn (t)| 2

F 2
n+1(R - t&b)

&Fn+1 (R - A&bI ) f &2

�sup
t�b

|1&tPn (t)| 2

F 2
n+1(R - t&b)

&F� (R - A&bI ) f &2.

We will now look for a polynomial Pn (t) such that supt�b ( |1&
tPn (t)|�Fn+1 (R - t&b)) is minimal. Let us introduce new variables
t=b+x2 and b=r2. Then, sup ( |1&tPn (t)|�Fn+1 (R - t&b))=
supx�0 ( |1&(r2+x2) Pn (r2+x2)|�Fn+1 (Rx)). Define Pn (r2+x2) by the
formula

1&(r2+x2) Pn (r2+x2)=
Tn+1 (Rx)
Tn+1 (iRr)

. (1.1.3)
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We claim that Pn (r2+x2) is a polynomial. To prove this, note that
F(x)=1&(Tn+1 (Rx)�Tn+1 (iRr)) is divisible by r2+x2, since F(ir)=
F(&ir)=0. In addition, it follows from (1) in Proposition 0.3.2 that the
function F(x) is even.

Lemma 1.1.3. Let Pn (r2+x2) be defined by (1.1.3). Then

sup
x�0

|1&(r2+x2) Pn (r2+x2)|
Fn+1 (Rx)

=
1

Tn+1 (iRr)
. (1.1.4)

Proof. It follows from (2) and (7) in Proposition 0.3.2 that for any real
x we have

}Tn+1(Rx)
Fn+1(Rx) }�1.

Therefore

sup
x�0

|1&(r2+x2) Pn (r2+x2)|
Fn+1 (Rx)

=sup
x�0 }

Tn+1 (Rx)
Fn+1 (Rx) }

1
Tn+1 (iRr)

�
1

Tn+1 (iRr)
.

The same properties (2) and (7) in Proposition 0.3.2 imply that
|Tn+1(Rxi)�Fn+1 (Rxi)|=1 for all xi # R such that Sn+1 (Rxi) is real, i.e.,
the supremum in (1.1.4) is attained at the points xi . By properties (3),
(4), and (5) from the same proposition, the function Tn+1(Rx)�Fn+1(Rx)
takes alternately the values +1 and &1, at the 2n+1 points xi with
arg Sn+1 (Rxi)=k?, as well as at \�. It follows from a Chebyshev-type
theorem [10, Chap. 2] that the function

sup
t�b

|1&tQn (t)|

Fn+1 (R - t&b)

takes the minimal possible value over all polynomials Qn (t) of n th degree
in the case where Qn (t)=Pn (t).

Lemmas 1.1.2 and 1.1.3 imply the following estimate for the polynomial
approximation of the solution of Eq. (0.2.1)
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Corollary 1.1.4. If Pn (t) is the polynomial defined by (1.1.3), then

&u&Pn (A) f &2�
1

Tn+1 (iRr)
&F� (R - A&bI ) f &. (1.1.5)

1.2. The following theorem gives an estimate for the polynomials Tn (z).

Theorem 1.2.1. Let z=x+iy. Then there exist a real constant c, inde-
pendent of x, y, and n, and a function 3( y) such that

3( y)={c
c | y|

if | y|�1,
if | y|�1,

and

|Tn (x+iy)|�3( y) |Sn (x+iy)| (1+x2)&1.

Proof. Since Tn (z) is an even function, one can assume without loss of
generality that y�0. The function Tn (z) can be represented as
Tn (z)=1�2Sn (z)(1+Qn (z)), where Qn (z)=>n

k=1 qk (z), qk (z)=((ak+iz)�
(ak&iz))2. We now proceed to finding estimates for 1+Qn (z). We shall
consider several cases.

Case 1. |z|�4 �n
k=1 ak .

In this case we have |1+Qn (z)|�1 and

|arg Qn (z)|�2 :
n

k=1

|arg (1+ak�(iz))&arg (1&ak�(iz))|

�2 :
n

k=1

( |arg (1+ak �(iz))|+|arg (1&ak �(iz))| )

�2 :
n

k=1 \?�2
ak

|z|
+?�2

ak

|z|+�?�2.

Here, we used the following elementary

Proposition 1. If |w|<1, then |arg (1+w)|�arcsin( |w| )�?�2 |w|.

Let us estimate |qk (z)|. We have

|qk (z)|=
|ak& y+ix| 2

|ak+ y&ix| 2=
(ak& y)2+x2

(ak+ y)2+x2

=1&
4ak y

(ak+ y)2+x2 .
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For any k we have |qk (z)|�1, since y�0, ak�0, and 4ab�(a+b)2 for
all a, b. Hence the inequality |Qn (z)|�|qk (z)| holds for any k, and

|1+Qn (z)|�1&|Qn (z)|�1&|qk (z)|

�1&\1&
4ak y

(ak+ y)2+x2+=
4ak y

(ak+ y)2+x2

=
1

(1+x2)
4ak y

((ak+ y)2�(1+x2)+x2�(1+x2))

�
4ak y
1+x2

1
(ak+ y)2+1

. (1.2.1)

The last inequality follows from the evident inequalities (ak+ y)2�
(1+x2)�(ak+ y)2 and x2�(1+x2)�1.

Case 2. 0� y�1.
Inequality (1.2.1) implies that

|1+Qn (z)|�
y

(1+x2)
4ak

(ak+ y)2+1
�c1

y
(1+x2)

,

where c1=maxk (4ak�(ak+ y)2+1). In particular, c1�4a1�(a1)2+1.

Case 3. 1� y�an .
There exists a number k with ak&1� y�ak . Then

|1+Qn (z)|�
y

(1+x2)
4ak

(ak+ y)2+1
�

1
(1+x2)

4akak&1

(2ak)2+1

�c2

1
(1+x2)

,

where c2=mink (4akak&1 �(2ak)2+1)�0.

Case 4. 1�an� y�2an .
Taking k=n in (1.2.1), we get

|1+Qn (z)|�
y

(1+x2)
4an

(an+ y)2+1
�

1
(1+x2)

4a2
n

9n2
n+1

�0.4
1

(1+x2)
.
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Case 5. 1�2an� y�4 �n
k=1 ak .

Since ak�an , ak �y�0.5. We also have x�y�x, since y�1. Therefore

|qk (z)|=1&
4ak y

(ak+ y)2+(x)2=1&
4ak �y

(ak �y+1)2+(x�y)2

�1&
4ak�y

9�4+x2 .

Let us now estimate ln |Qn (z)|.

ln |Qn (s)|=ln `
n

k=1

|qk (z)|= :
n

k=1

ln |qk (z)|

� :
n

k=1

ln \1&
4ak �y

9�4+x2+�& :
n

k=1 \
4ak �y

9�4+x2+
�&

4�y
9�4+x2 :

n

k=1

ak�&
1

9�4+x2 . (1.2.2)

For estimating ln(1&((4ak�y)�(9�4+x2))) we used the well-known

Proposition 2. ln(1&:)�&: for 0�:<1.

It is clear that :=(4ak �y)�(9�4+x2)�2�(9�4+x2)<1. The condition
y�2 �n

k=1 ak was employed in the last inequality. It follows from (1.2.2)
that

|1+Qn (z)|�1&|Qn (z)|=1&exp [ln |Qn (z)|]

�1&exp \&
1

9�4+x2+ . (1.2.3)

We will now use the inequality following

Proposition 3. 1&exp(&:)�(1�e) : for 0�:<1.

This proposition and (1.2.3) imply that

|1+Qn (z)| 1&exp \&
1

9�4+x2+�1�e
1

9�4+x2

�4�(9e)
1

1+x2 .

This ends the proof of Theorem 1.2.1.
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We denote >n
k=m (1&(iz�ak))2 by S m

n (z).
It is clear that Sn (z)=S m

n (z) Sm&1 (z). For every m there exists a con-
stant c such that

|Sm&1 (z)|�c(1+x2)m&1.

This yields

Proposition 1.2.2. Under the hypotheses of Theorem 1.2.1 we have

|Tn (x+iy)|�3( y) |S m
n (x+iy)| (1+x2)m&2.

Corollary 1.2.3. The polynomials Pn (*) defined by (1.1.3) satisfy the
estimate

&u(x)&Pn (A) f (x)&2�
1

3(Rr)
1

|Sn (iRr)|
& f� (R - A&bI ) f &.

1.3. We give an estimate for the functions |Sn (iRr)|.

Lemma 1.3.1. For any sequence [ak] satisfying (0.3.1)�(0.3.3) there
exists a constant c such that

|Sn (iRr)|�c exp \2Rr :
n

k=1

1�ak+ .

Proof. We will use the fact that ln(1+x)�x&x2�2 for 0<x�1. By
virtue of (0.3.1), ak � � as k � �. Therefore, for some n0 , we have
Rr�ak<1 for n�n0 . In addition, ��

k=1 1�a2
k<� by (0.3.3). Then

ln |Sn (iRr)|=ln } `
n

k=1
\1+

Rr
ak +

2

}=2 :
n

k=1

ln \1+
Rr
ak +

=2 :
n0

k=1

ln \1+
Rr
ak ++2 :

n

k=n0

ln \1+
Rr
ak +

�2 :
n0

k=1

ln \1+
Rr
ak ++2 :

n

k=n0
\Rr

ak
&

R2r2

2a2
k +

=2 :
n0

k=1

ln \1+
Rr
ak +&2 :

n0

k=1 \
Rr
ak +

&R2r2 :
n

k=n0

(1�a2
k)+2 :

n

k=1

Rr
ak
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�2 :
n0

k=1

ln \1+
Rr
ak +&2 :

n0

k=1
\Rr

ak +
&R2r2 :

�

k=n0

(1�a2
k)+2 :

n

k=1

Rr
ak

=c1+2Rr :
n

k=1

1
ak

.

Here,

c1=2 :
n0

k=1

ln \1+
Rr
ak +&2 :

n0

k=1
\Rr

ak +&R2r2 :
�

k=1

(1�a2
k).

Hence

|Sn (iRr)|=exp[ln |Sn (iRr)|]�exp {c1+2Rr :
n

k=1

1�ak=
=c exp {2Rr :

n

k=1

1�ak= .

The following estimate can be obtained in a similar way.

Proposition 1.3.2. |Sn (iRr)|�c exp(2Rr �n
k=m 1�ak).

Lemma 1.3.1 and Corollary 1.2.3 imply

Theorem 1.3.3. Let 0<R<R0 (A, f ) and let Pn (*) be defined by
(1.1.3). Then

&u(x)&Pn (A) f (x)&�c(R, r) exp {&2Rr :
n

k=1

1�ak= &F� (R - A&bI ) f &.

1.4. Let us consider the following examples.

1.4.1. Let C(M) be the class of analytic functions (see [3]). Then
M(k) = kk, and ak = k. The sequence [ak] satisfies all properties
(0.3.1)�(0.3.3), and �n

k=1 1�k=ln(n)+#+ f (n)�n, where # is the Euler con-
stant and 0< f (n)<1. Theorem 1.3.2 gives us the following estimate of the
convergence rate of the polynomial approximations Pn (A) f (x) to the solu-
tion of (0.2.1):

&u(x)&Pn (A) f (x)&�c(R, r)n&2Rr &F� (R - A&bI ) f &.

Here F� (z)=>�
k=1 (1+z2�k2)=sinh(?z)�?z.
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1.4.2. Let C(M) be the Denjoy quasianalytical class. This means that

M(k)=(k } ln k } ln ln k } } } } } ln } } } ln k

s factors

)k.

The sequence [ak] may be chosen by the formula ak=k } ln k }
(ln ln k) } } } } } (ln } } } ln k). Properties (0.3.1)�(0.3.3) hold, and for
�n

k=1 1�ak=ln ln } } } ln k+ f (n) exist constants c1 and c2 such that
c1< f (n)<c2 . Theorem 1.3.2 yields the following estimate of the con-
vergence rate of the polynomial approximation Pn (A) f (x) to the solution
of (0.2.1):

&u(x)&Pn (A) f (x)&�c(R, r)(ln ln } } } ln(n))&2Rr &F� (R - A&bI ) f &.

1.4.3. Let C(M) be the quasianalytical class defined by the sequence
M(k) = (k ln& k)k, where 0 < & < 1. Choose the sequence ak = k ln& k.
Properties (0.3.1)�(0.3.3) hold, and for �n

k=1 1�ak=1�(1&&) ln1&& (n)+ f (n),
there exist constants c1 and c2 such that c1< f (n)<c2 . Theorem 1.3.2
yields the following estimate of the convergence rate of the polynomial
approximation Pn (A) f (x) to the solution of (0.2.1):

&u(x)&P(A) f (x)&�c(R, r) exp {&
2Rr
1&&

ln1&& (n)= &F� (R - A&bI ) f &.

2. THE HYPERBOLIC EQUATION: AN ESTIMATE OF
THE CONVERGENCE RATE

2.0. In this section the hyperbolic equation (0.2.2) is studied. The solu-
tion of (0.2.2) is given by the formula

u(x, t)=G0 (t, A) f0 (x)+G1 (t, A) f1 (x)+G2 (t, A) f2 (x), (2.0.1)

where

G0 (t, *)=
(1&cos(t - *))

*
,

G1 (t, *)=cos(t - *), (2.0.2)

G2 (t, *)=
sin(t - *)

- *
.
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We introduce new variables

*=z2, Hi (t, z)=Gi (t, z2). (2.0.3)

We denote J;=[z # C | |Jz|�;].

Definition 2.0.1. For any q>0 let

Uq (J;)=[ f (z) # O(J;) | | f (x+iy)|�c(1+|x| )q,

z=x+iy # J;]

be the class of analytic functions in J; whose rate of the growth does not
exceed the qth degree of x=R(z).

We denote U(J;)=�q>0 Uq (J;).
The functions Hi (t, z) belong to the class Uq (J;) for a fixed t and

are even in z. Let us construct a sequence [Pi
n (t, z)] of even poly-

nomials Pi
n (t, z), n=1, 2, ..., of degree 2n&2 such that the sequence

�2
i=0 Pi

n (t, - A) fi (x) converges to u(x, t) in the norm of the space H. For
any i, define Pi

n (t, z) as the interpolation polynomial of Hi (t, z) that takes
the same values as Hi (t, z) at the zeros of Tn (z). Since the functions
Hi (t, z) and Tn (z) are even in z, the polynomial Pi

n (t, z) is even in z.

2.1. The following two propositions hold for any function H(z) # Uq (J;).

2.1.1. The Hermite formula [7]. Let Pn (z) be the interpolation
polynomial of the function H(z) constructed on the basis of the zeros of
Tn (z), that is, taking the values of H(z) at z # [zi | Tn (zi)=0, i=1, ..., 2n].
Then

H(z)&Pn (z)=
1

2?
Tn (z) |

#

H(`)
Tn (`)

d`
`&z

, (2.1.1)

where the contour # bounds the zeros of Tn (z) and the point z. We take
as # the two lines parallel to the x axis (that contains the zeros of the func-
tion Tn (z)).

2.1.2. Spectral decomposition formula. Any function H(z) in Uq (J;)
satisfies the spectral decomposition formula

&H(A) f &2=|
�

b
|H(+)|2 d(E+ f, f ), (2.1.2)

where as earlier, A is a self-adjoint semi-bounded operator, b bounds the
spectrum of A from below, and f # D(A).
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2.2. We now present the main result of this section.

Theorem 2.2.1. Let u(x, t) be the solution of (0.2.2), where A is a
self-adjoint semi-bounded operator with coefficients from the class C(M), and
let fi (x) belong to C(M). Let Pi

n (t, z), n=1, 2, ..., be the interpolation poly-
nomials of the functions Hi (t, z) defined by (2.0.2) and (2.0.3) that take the
same values as the functions Hi (t, z) at the zeros of the polynomials Tn (z).
The class C(M) is defined by the sequence [an], where n # N; the sequence
[an] is defined by a monotonously increasing function a(x) (that is,
an=a(n)) having the following properties:

(1) x�a(x) is a monotonous non-increasing function,

(2) x�exp [(t�2R)(a(x)�x)] is an increasing function that tends to
infinity as x � �.

Let fi (x) # D(F� (R - A)) for all i. Then there exist positive constants c1 and
c2 such that

"u(x, t)& :
2

i=0

Pi
n (t, - A) fi (x)"�c1 exp {&2c2

n
exp((t�2R)(an�n))= .

The constant c2 is close to 1.

Remark. The classes of quasianalytic functions determined by the
hypotheses of the theorem are non-void: these hypotheses are satisfied by
the classes described in Examples 1.4.1 and 1.4.3.

Proof. It follows from (2.0.1) and (2.1.2) that

"u(x, t)& :
2

i=0

Pi
n (t, - A) fi (x)"

2

=" :
2

i=0

Gi (t, A) fi (x)& :
2

i=0

Pi
n (t, - A) fi (x)"

2

� :
2

i=0

&Hi (t, - A) fi (x)&Pi
n (t, - A) fi (x)&2

= :
2

i=0
|

�

b
|Hi (t, - *)&Pi

n (t, - *)| 2 d(E* f, f ). (2.2.1)

Since all Hi (t, z) belong to the same class Uq (J;), we may consider one
summand only. Denote Hi (t, z) by H(t, z), Pi

n (t, z) by Pn (t, z), fi (x) by
f (x), respectively. Then
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|
�

b
|H(t, - *)&Pn (t, - *)| 2 d(E* f, f )

=|
�

b

|H(t, - *)&Pn (t, - *)| 2

F 2
� (R - *)

F 2
� (R - *) d(E* f, f )

�max
*�b

|H(t, - *)&Pn (t, - *)| 2

F 2
� (R - *) |

�

b
F 2

� (R - *) d(E* f, f )

=max
*�b

|H(t, - *)&Pn (t, - *)| 2

F 2
� (R - *)

&F� (R - A) f (x)&2. (2.2.2)

One can deduce from (2.2.1) and (2.2.2) that

"u(x, t)& :
2

i=0

Pi
n (t, - A) fi (x)"�c1 max

*�b

|H(t, - *)&Pn (t, - *)|

F� (R - *)
, (2.2.3)

where c1=3c &F� (R - A) f (x)&.
To estimate max*�b ( |H(t, - *)&Pn (t, - *)|�F� (R - *), we will sub-

stitute * for z2 and apply formula (2.1.1) to the polynomial Tn (Rz). Then

|H(t, z)&Pn (t, z)|

�
1

2?
|Tn (Rz)| } |�J;

H(t, `)
Tn (R`)

d`
`&z }

�
1

2?
|Tn (Rz)| } |

�

&�, Jz=&;

H(t, `)
Tn (R`) \

1
`&z

&
1

`+z+ d` }
�

1
2?

|Tn (Rz)| sup
` # �J;

} H(t, `)
Tn (R`) } |

�

&�, J`=&; }
1

`&z
&

1
`+z } d`.

Using (2.1.3), (2.1.4), and (0.3.5), we finally obtain

"u(x, t)& :
2

i=0

Pi
n (t, - A) fi (x)"�c sup

` # �J;
} H(t, `)
Tn (R`) } max

x�b

Tn (Rx)
F� (Rx)

�c sup
` # �J;

} H(t, `)
Tn (R`) } . (2.2.4)

Let us now estimate sup` # �J;
|H(t, `)�Tn (R`)| for various values of ;. Let

us find miny sup` # �J;
|H(t, `)�Tn (R`)|.
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Lemma 2.2.2. Under the hypotheses of Theorem 2.2.1,

min
y

sup
`=x+iy }

H(t, `)
Tn(R`) }�c1 exp {&2c2

n
exp((t�2R)(an�n))= .

Proof. For all functions Hi (t, z) the estimate |Hi (t, z)|�c2 exp(ty),
y=Jz, holds. Moreover, Theorem 1.2.1 implies that

|Tn(x+iy)|�3( y) |S m
n (x+iy)| (1+x2)m&2,

where

3( y)={c
c | y|

if | y|�1,
if | y|�1

.

Hence

min
y

sup
`=x+iy }

H(t, `)
Tn(R`) }�c min

y
sup

x

exp(ty)
3( y) |S m

n (Rx+iRy)| (1+x2)m&2 .

By substituting in the last inequality Rx and Ry for x and y, respectively,
and 2{ for t�R, we get

min
y�1

sup
`=x+iy }

H(t, `)
Tn(R`) }�c3 min

y�R
sup

x
exp [2{y&ln(|S m

n (x+iy)| )]

=c3 exp {min
y

sup
x \2{y&2 :

n

k=m

ln } 1+
| y|&ix

ak }+=
�c3 exp {min

y�R \2{y&2 :
n

k=m

ln \1+
y

ak++= . (2.2.5)

We now estimate {y&�n
k=m ln(1+ y�ak) using the Euler�Maclaurin for-

mula (see [6]):

{y& :
n

k=m

ln \1+
y

ak+={y&|
n

m
ln \1+

y
a(`)+ d`

+
1
2 \ln \1+

y
an +&ln \1+

y
am+++O(1).

By integrating the last equality by parts and using the fact that x�a(x) is
a non-increasing function (so that x�a(x)�n�an for x�n) we have, further
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{y&* ln(1+ y�a(*))| *=n
*=m& y |

n

m

*
a(*)

a$(*)
y+a(*)

d*

+
1
2

(ln(1+ y�an)&ln(1+ y�am))+O(1)

�{y&n ln(1+ y�an)+m ln(1+m�am)& y
n
an

|
n

m

a$(*)
y+a(*)

d*

+
1
2

(ln(1+ y�an)&ln(1+ y�am))+O(1)

�{y&n ln(1+ y�an)+m ln(1+ y�am)& y
n

an
ln( y+a(*)) }

*=n

*=m

+
1
2

(ln(1+ y�an)&ln(1+ y�am))+O(1)

�{y&\n&
1
2+ ln(1+ y�an)+\m&

1
2+ ln(1+ y�am)

& y
n

an
ln \y+an

y+am++c4 .

Denoting the last expression by I( y), we obtain that

min
y�R {{y& :

n

k=m

ln(1+ y�ak)=�min
y�R

I( y).

For any function minx # 0 f (x)� f (x0) for x0 # 0, let us take y= y0(n)=
(an&am exp({an�n))�exp({an�n)&1. By condition (2) of Theorem 2.2.1,
y0(n) � � as n � �. Therefore, beginning with some n, we have y0(n)>R.
Hence

min
y�R {{y& :

n

k=m

ln(1+ y�ak)=�I( y0(n)).

By substituting y0(n) into I( y) and simplifying it, we get

I( y0(n))=&n ln(1+ y0(n)�an) \1&
1

2n
+

(m&1�2) ln(1+ y0(n)�am)
n ln(1+ y0(n)�an) + .

The following lemma is obvious.
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Lemma 2.2.3. Under the hypotheses of Theorem 2.2.1, we have

(1) limn � � ((m&1�2) ln(1+ y0(n)�am)�n ln(1+ y0(n)�an))=0,

(2) limn � � (ln(1+ y0(n)�an)�exp(&{an �n))=1.

Lemma 2.2.3 implies that there exists a constant c2 , sufficiently close to
1, such that for all n large enough we have

min
y�R

I( y)� &2c2 n exp(&{an �n). (2.2.6)

By substituting (2.2.6) into (2.2.5) and taking into account all the changes
of variables, we finally obtain that

"u(x, t)& :
2

i=0

Pi
n(t, - A) fi (x)"�c1 exp {&2c2

n
exp((t�2R)(an�n))= .

The theorem is proved.

3. THE PARABOLIC EQUATION: AN ESTIMATE OF
THE CONVERGENCE RATE

3.0. In this section the hyperbolic equation (0.2.3) is studied. The solu-
tion of (0.2.3) is given by the formula

u(x, t)=G0(t, A) f0(x)+G1(t, A) f1(x), (3.0.1)

where

G0(t, *)=
(1&exp(&t*))

*
,

(3.0.2)

G1(t, *)=exp(&t*).

3.1. We shall assume throughout this section that the notation and the
changes of variables introduced in Section 2 are in force.

3.2. We now present the main result of this section.

Theorem 3.2.1. Let u(x, t) be the solution of (0.2.3), where A is a
self-adjoint semi-bounded operator with coefficients from the class C(M), and
let fi (x) belong to C(M). Let Pi

n(t, z), n=1, 2, ..., be the interpolation poly-
nomials of the functions Hi (t, z) defined by (3.0.2) and (2.0.3) that take the
same values as the functions Hi (t, z) at the zeros of the polynomials Tn(z).
The class C(M) is defined by the sequence [an], where n # N; the sequence
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[an] is defined by a monotonous increasing function a(x) (that is, an=a(n))
having the following properties:

(1) x�a(x) is a monotonous non-increasing function,

(2) (x ln a(x))�a(x) is an increasing function that tends to infinity as
x � �.

Let fi (x) # D(F�(R - A)) for all i. Then there exist positive constants c1 and
c2 such that

"u(x, t)& :
1

i=0

Pi
n(t, - A) fi (x)"�c1 exp {&

c2R2

t \n ln an

an +
2

= .

The constant c2 is close to 1.

Proof. As in the proof of Theorem 2.2.1, it follows from (2.1.1), (2.1.2),
(3.0.1), and (3.0.2) that

"u(x, t)& :
1

i=0

Pi
n(t, - A) fi (x)"�c sup

` # �J;
}H(t, `)
Tn(R`) } max

x�b

Tn(Rx)
F�(Rx)

�c sup
` # �J;

}H(t, `)
Tn(R`) } . (3.2.1)

Lemma 3.2.2. Under the hypotheses of Theorem 3.2.1,

min
y

sup
`=x+iy }

H(t, `)
Tn(R`) }�c1 exp {&

c2R2

t \n ln an

an +
2

= .

Proof. For all functions Hi (t, z) the estimate |Hi (t, z)|�c2 exp(ty2),
y=Jz, holds. Moreover, Theorem 1.2.1 implies that

|Tn(x+iy)|�3( y) |S m
n (x+iy)| (1+x2)m&2,

where

3( y)={c
c | y|

if | y|�1,
if | y|�1.

Hence

min
y

sup
`=x+iy }

H(t, `)
Tn(R`) }�c min

y
sup

x

exp(ty2)
3( y) |S m

n (Rx+iRy)| (1+x2)m&2.
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By substituting Rx and Ry for x and y, respectively, and 2{ for t�(R2), we
get

min
y�1

sup
`=x+iy }

H(t, `)
Tn(R`) }�c3 min

y�R
sup

x
exp [{y2&ln( |S m

n (x+iy)| )]

=c3 exp {min
y

sup
x \{y2&2 :

n

k=m

ln }1+
| y|&ix

ak }+=
�c3 exp {min

y�R
2 \{

2
y2& :

n

k=m

ln \1+
y

ak ++= . (3.2.2)

Now estimate ({�2) y2&�n
k=m ln(1+ y�ak). By integrating the last equality

by parts and using the fact that x�a(x) is a non-increasing function (so that
x�a(x)�n�an for x�n), we have

{
2

y2& :
n

k=m

ln \1+
y

ak+
=

{
2

y2&|
n

m
ln \1+

y
a(`)+ d`+

1
2 \ln \1+

y
an+&ln \1+

y
am +++O(1)

=
{
2

y2&* ln \1+
y

a(*)+}
*=n

*=m
& y |

n

m

*
a(*)

a$(*)
y+a(*)

d*

+
1
2 \ln \1+

y
an+&ln \1+

y
am +++O(1)

�
{
2

y2&n ln(1+ y�an)+m ln(1+m�am)& y
n

an
|

n

m

a$(*)
y+a(*)

d*

+
1
2 \ln \1+

y
an+&ln \1+

y
am +++O(1)

�
{
2

y2&n ln(1+ y�an)+m ln(1+ y�am)& y
n

an
ln( y+a(*)) }

*=n

*=m

+
1
2 \ln \1+

y
an+&ln \1+

y
am +++O(1)

�
{
2

y2&\n&
1
2+ ln \1+

y
an++\m&

1
2+ ln \1+

y
am +

& y
n

an
ln \ y+an

y+am++c4 .
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Denoting the last expression by I( y), we obtain that

min
y�R {

{
2

y2& :
n

k=m

ln(1+ y�ak)=�min
y�R

I( y).

Let us take y= y1(n)=(1�{)(n ln an�an). By condition (2) of Theorem 3.2.1,
y1(n) � � as n � �. Therefore, beginning with some n, we have y1(n)>R.
Hence

min
y�R {

{
2

y2& :
n

k=m

ln(1+ y�ak)=�I( y1(n)). (3.2.3)

By substituting y1(n) into I( y) and simplifying it, we get

I( y1(n))=&
1
2{ \

n ln an

an +
2

\1+
ln(1+ y1 �an)

ln an
&

ln( y1+am)
ln an

+
2{(n&1�2) ln(1+ y1�an)

(n ln an�an)2 +
2{(m&1�2) ln(1+ y1 �am)

(n ln an �an)2 ++c4 .

Lemma 3.2.3. Under the hypotheses of Theorem 3.2.1, we have

(1) limn � � (ln(1+ y1 �an)�ln an)=0,

(2) limn � � (ln( y1+am)�ln an)=0,

(3) limn � � (2{(n&1�2) ln(1+ y1 �an)�(n ln an�an)2)=0,

(4) limn � � (2{(m&1�2) ln(1+ y1 �am)�(n ln an�an)2)=0.

Lemma 3.2.3 implies that there exists a constant c2 , sufficiently close to
1, such that for all n large enough we have

min
y�R

I( y1(n))� &
c2

2{ \
n ln an

an +
2

+c4 . (3.2.4)

By substituting (3.2.4) into (3.2.3) and taking into account all the changes
of variables, we finally obtain that

"u(x, t)& :
1

i=0

Pi
n(t, - A) fi (x)"�c1 exp {&

c2R2

t \n ln an

an +
2

= .

The theorem is proved.

Using the approximation theory by S. N. Bernstein, on the basis of
the convergence rate of polynomial approximations one can determine
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the smoothness class of the solution u(x) (see also [3]). With respect to
Eqs. (0.2.1)�(0.2.3) with quasianalytical coefficients, this will be studied in
our paper to follow.
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